Monte Carlo Convergence Analysis for Anisotropic Sampling Power Spectra

نویسندگان

  • Gurprit Singh
  • Wojciech Jarosz
چکیده

Traditional Monte Carlo (MC) integration methods use point samples to numerically approximate the underlying integral. This approximation introduces variance in the integrated result, and this error can depend critically on the sampling patterns used during integration. Most of the well known samplers used for MC integration in graphics, e.g. jitter, Latin hypercube (n-rooks), multi-jitter, are anisotropic in nature. However, there are currently no tools available to analyze the impact of such anisotropic samplers on the variance convergence behavior of Monte Carlo integration. In this work, we propose a mathematical tool in the Fourier domain that allows analyzing the variance, and subsequently the convergence rate, of Monte Carlo integration using any arbitrary (anisotropic) sampling power spectrum. We apply our analysis to common anisotropic point sampling strategies in Monte Carlo integration, and extend our analysis to recent Monte Carlo approaches relying on line samples which have inherently anisotropic power spectra. We validate our theoretical results with several experiments using both point and line samples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variance and Convergence Analysis of Monte Carlo Line and Segment Sampling

Recently researchers have started employing Monte Carlo-like line sample estimators in rendering, demonstrating dramatic reductions in variance (visible noise) for effects such as soft shadows, defocus blur, and participating media. Unfortunately, there is currently no formal theoretical framework to predict and analyze Monte Carlo variance using line and segment samples which have inherently a...

متن کامل

Sampling and Variance Analysis for Monte Carlo Integration in Spherical Domain. (Analyse de Variance et Échantillonnage pour l'intégration Monte Carlo sur la sphère)

This dissertation introduces a theoretical framework to study different sampling patterns in the spherical domain and their effects in the evaluation of global illumination integrals. Evaluating illumination (light transport) is one of the most essential aspect in image synthesis to achieve realism which involves solving multi-dimensional space integrals. Monte Carlo based numerical integration...

متن کامل

Applying Point Estimation and Monte Carlo Simulation Methods in Solving Probabilistic Optimal Power Flow Considering Renewable Energy Uncertainties

The increasing penetration of renewable energy results in changing the traditional power system planning and operation tools. As the generated power by the renewable energy resources are probabilistically changed, the certain power system analysis tolls cannot be applied in this case.  Probabilistic optimal power flow is one of the most useful tools regarding the power system analysis in presen...

متن کامل

Error analysis of estimators that use combinations of stochastic sampling strategies for direct illumination

We present a theoretical analysis of error of combinations of Monte Carlo estimators used in image synthesis. Importance sampling and multiple importance sampling are popular variance-reduction strategies. Unfortunately, neither strategy improves the rate of convergence of Monte Carlo integration. Jittered sampling (a type of stratified sampling), on the other hand is known to improve the conve...

متن کامل

A new proof of geometric convergence for general transport problems based on sequential correlated sampling methods

In [J. Halton, Sequential Monte Carlo, Proc. Comb. Phil. Soc. 58 (1962), J. Halton, Sequential Monte Carlo Techniques for the Solution of Linear Systems, J. Sci. Comp. 9 (1994) 213-257] Halton introduced a strategy to be used in Monte Carlo algorithms for the efficient solution of certain matrix problems. We showed in [R. Kong, J. Spanier, Sequential correlated sampling methods for some transpo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016